a2 United States Patent

Martz et al.

US009158584B2

US 9,158,584 B2
Oct. 13, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

DISTRIBUTED APPLICATION EXECUTION
IN A HETEROGENEOUS PROCESSING
SYSTEM

Applicant: RAYTHEON BBN TECHNOLOGIES
CORP., Cambridge, MA (US)
Inventors: Robert Martz, Laurel, MD (US); David
Matthews, Ellicott City, MD (US);
Joshua Edmison, Ellicott City, MD
us)
Assignee: RAYTHEON CYBER PRODUCTS,
LLC, Herndon, VA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 255 days.

Appl. No.: 13/856,102

Filed: Apr. 3,2013

Prior Publication Data
US 2014/0304708 Al Oct. 9, 2014
Int. CI.
GOG6F 9/46 (2006.01)
GOG6F 9/50 (2006.01)
GOGF 9/30 (2006.01)
U.S. CL

CPC ... GOG6F 9/50 (2013.01); GOGF 9/30 (2013.01)
Field of Classification Search

CPC ... GOGF 8/456; GOGF 9/50; GOGF 9/30
USPC e 718/100, 102
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,941,791 B2* 5/2011 Wangetal. 717/140

8,843,901 B2* 9/2014 Krajecetal. 717/130

2005/0188364 Al* 82005 Cockxetal. 717/159

2012/0260237 Al* 10/2012 Duddles etal. . .. 717/139

2013/0283247 Al* 10/2013 Krajecetal. 717/130
OTHER PUBLICATIONS

Sunderam, “PVM: A Framework for Parallel Distributed Comput-
ing”, Concurrency: practice and experience 2.4 (2006) (pp. 315-339),
Department of Math and Computer Science, Emory University,
Atlanta, Georgia, provided having pp. 1-27.

Borthakur, “The Hadoop Distributed File System Architecture and
Design”, The Apache Software Foundation, 2007 (14 pgs.).

(Continued)

Primary Examiner — Emerson Puente

Assistant Examiner — Willy W Huaracha

(74) Attorney, Agent, or Firm — Christie, Parker & Hale,
LLP

(57) ABSTRACT

A method for distributing execution of a computer program to
a plurality of hardware architectures of different types includ-
ing: analyzing the computer program to identify a plurality of
execution boundaries; selecting one or more execution
boundaries from the plurality of execution boundaries; link-
ing the computer program to the selected one or more execu-
tion boundaries; executing the computer program with linked
execution boundaries; saving a hardware agnostic state of the
execution of the computer program, when the execution
encounters a boundary from the selected one or more execu-
tion boundaries; and transmitting the hardware agnostic state
to a remote hardware architecture to be executed on the
remote hardware architecture, responsive to the hardware
agnostic state.

20 Claims, 5 Drawing Sheets

2y 2e compuiey progiam to

identify execuiion bunndaries

Seteot exer

tinn hoamiary

Link ihe pre

seteeted execy

foverate the prograon with

US 9,158,584 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Braun, et al., “A Comparison of Eleven Static Heuristics for Mapping
a Class of Independent Tasks onto Heterogeneous Distributed Com-

puting Systems”, Journal of Parallel and Distributed Computing, Vo.
61, 2001 (pp. 810-837).

Thain, et al., Distributed Computing in Practice: The Condor expe-
rience, Computer Sciences Department, University of Wisconsin,
Concurrency: Pract. Exper, 2004 (36 pgs.).

* cited by examiner

US 9,158,584 B2

Sheet 1 of 5

Oct. 13, 2015

U.S. Patent

NI |
SIOANOSIY IBJOLUTD
Ao LIAT ﬁoﬁwz
P 100
T N
e o
71 /
/
91 ISHOHUOD
\\\
2 e
uonesyday
911 yy 301
/ /
C DICMDIRH T SIRMDIEH
ESTIFIENY wwoéwmy
¢ uonesyddy
0 . /| 1 uoneddy
7 BICMDIEH 901
ot FIOWSY
oL] 7 uoneayddy

US 9,158,584 B2

Sheet 2 of 5

¢ O
Alepuno feounog
y ; g seoydd g ‘ =] DANJISHYNY
HOHNOBXY Ui uoieslaay wonnoaxg |
Buiuung uonesyddy pasned uoneayddy Fuiuung uonenddy e DA DYDY

Oct. 13, 2015

U.S. Patent

B |

U.S. Patent Oct. 13, 2015 Sheet 3 of 5 US 9,158,584 B2

e
302 ,
X Analyze computler program o
identity execution boundaries
304
X Select execution boundary
~ e
3060
\\
\ Link the program to the
selected execution boundary
308
\\
. Execute the program with
\-.
Hinked execution boundaries
310 : .
\ save a hardware agnostic state,
™~ when the execution sncounters
the selected execution boundary
312
3id ~
\ Transmit the hardware agnostic
N state to a remote hardware
archifecture

FIG. 3

U.S. Patent Oct. 13, 2015 Sheet 4 of 5 US 9,158,584 B2

SRRRERE SRR

5

*_g@\:é-.«am-. ' '\:-.-c-*l.\\.;c‘.

-:=:-:t-:t-:=:-:ﬁ&-:t-:f-.‘}.-.-.-:t-:i'.-:t-:t-:i'.-:t-:t-:t-:t-:

FIG. 5

U.S. Patent Oct. 13, 2015 Sheet 5 of 5 US 9,158,584 B2

Architecture One Architecture Agnostic Architecture Two

Stack

. Address

FiGi. 6

US 9,158,584 B2

1
DISTRIBUTED APPLICATION EXECUTION
IN A HETEROGENEOUS PROCESSING
SYSTEM

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

This invention disclosure is related to a government con-
tract. The U.S. Government has certain rights to this inven-
tion.

FIELD OF THE INVENTION

The present invention relates to execution of computer
programs and more specifically to a method for distributing
application/program execution in a heterogeneous processing
system.

BACKGROUND

Due to computationally intensive applications, the need for
high-performance computing/processing systems that inter-
act with other computing/processing environments, for
example, audio/video systems, control systems, networked
applications, image processing, and the like, is ever increas-
ing.

In general, a heterogeneous computing systems refers to a
system that uses several different types of computational
devices/modules. A computational device could be a general-
purpose processor, a special-purpose processor, for example,
a digital signal processor or graphics processing unit, a co-
processor, or a custom application-specific integrated circuit
(ASIC) or field-programmable gate array (FPGA), all of
which include processors with different instruction set archi-
tectures. Conventionally, programming heterogeneous
machines is complicated and time consuming since develop-
ing applications that make best use of characteristics of dif-
ferent processors increases the programmer’s burden. Con-
ventional methods that require hardware specific code to be
included throughout the application code increases the com-
plexity and decreases the portability of software on hetero-
geneous architectures.

Modern computing systems have many different types of
processors, in terms of both power and architecture. In most
cases, those processors are not used to their full potential. One
of the issues that limits this under-utilization, is that there is
no easy way to send portions of'an application to be processed
on a remote processor while allowing access to the local
system resources.

Historically this problem has been solved by packaging
isolated sections of data that require processing, and shipping
off that data for remote processing. However, this conven-
tional method only works for applications that contain data
and processing that are capable of being isolated and do not
need to interact with other system resources. An exemplary
framework that does this is Hadoop™, which utilizes the
Hadoop Distributed File System (HDFS) to distribute data to
its compute nodes, and then schedules processing with a
JobTracker.

SUMMARY OF THE INVENTION

In some embodiments, the present invention is a method
for distributing execution of a computer program to a plural-
ity of hardware architectures of different types. The method
includes: analyzing the computer program to identify a plu-
rality of execution boundaries; selecting one or more execu-

10

15

20

25

30

35

40

45

50

55

60

65

2

tion boundaries from the plurality of execution boundaries;
linking the computer program to the selected one or more
execution boundaries; executing the computer program with
linked execution boundaries; saving a hardware agnostic state
of'the execution of the computer program, when the execution
encounters a boundary from the selected one or more execu-
tion boundaries; and transmitting the hardware agnostic state
to a remote hardware architecture to be executed on the
remote hardware architecture, responsive to the hardware
agnostic state.

In some embodiments, the present invention is a method
for distributing execution of a computer program to a plural-
ity of hardware architectures of different types. The method
includes: analyzing the computer program to identify an
execution boundaries; linking the computer program to the
execution boundary; executing the computer program with
the linked execution boundary in an originating hardware
architecture; saving a hardware agnostic state of the execu-
tion of the computer program, when the execution encounters
said execution boundary; and transmitting the hardware
agnostic state to a remote hardware architecture to be
executed on the remote hardware architecture, responsive to
the hardware agnostic state, wherein the remote hardware
architecture is selected randomly from a list of remote hard-
ware architectures.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the present invention, and
many of the attendant features and aspects thereof, will
become more readily apparent as the invention becomes bet-
ter understood by reference to the following detailed descrip-
tion when considered in conjunction with the accompanying
drawings in which like reference symbols indicate like com-
ponents, wherein:

FIG. 1 depicts an exemplary simplified heterogeneous pro-
cessing environment, according to some embodiments of the
present invention.

FIG. 2 is a simplified timing diagram of a computer pro-
gram, according to some embodiments of the present inven-
tion.

FIG. 3 is an exemplary process flow for distributing execu-
tion of a computer program to a plurality of hardware archi-
tectures of different types, according to some embodiments of
the present invention.

FIG. 4 is a simplified process flow for identifying or select-
ing a number of execution boundaries in an application,
according to some embodiments of the present invention.

FIG. 5 is a simplified process flow for sending the execu-
tion state to a remote hardware and receiving the results back,
according to some embodiments of the present invention.

FIG. 6 shows an exemplary state information, according to
some embodiments of the present invention.

DETAILED DESCRIPTION

The present invention is directed to a method for distribut-
ing application/program execution in a heterogeneous pro-
cessing system. The invention seamlessly passes a hardware
agnostic execution state between a variety of different types
of computational devices/modules with their own processors.
In other words, the state being passed and the state passing
mechanism is not tied to any particular architecture and thus
new hardware (processor) types can easily be added and
removed from a heterogeneous computing system employing
the present invention. The hardware agnostic state is trans-
ferred to a target hardware, without making the executing

US 9,158,584 B2

3

application aware of what portions of the application is
executing by which (remote) hardware.

With the present invention, portions of the application can
be executed remotely, but share system resources (file system,
1/0 and user interface) and interact with other program com-
ponents as if they were running locally. This allows the excess
hardware in a computing system to be more effectively and
more frequently utilized. Fully utilizing the hardware of a
heterogeneous system has benefits in both power and secu-
rity. Certain types of processing is more power efficient when
it takes place on specific hardware, and matching the types of
processing to their optimal hardware can have a large impact
on the overall power efficiency of the system. From a security
standpoint, an attacker needs to know the underlying archi-
tecture of a system to crack an attack payload. If the archi-
tecture is rapidly and randomly changing, it will be difficult
for the attackers to successfully match their payload to the
changing architecture.

In some embodiments, a common interface layer, such as
an application programming interface (API), is identified in
the application to allow the transfer of the state to occur
without requiring modification of the application. The present
invention allows the state to be transferred and system
resources (e.g., remote processing hardware) to be shared
among different architectures.

FIG. 1 depicts an exemplary simplified heterogeneous pro-
cessing environment, according to some embodiments of the
present invention. As shown, an application 102 is being
executed on a controller (local hardware) 104 having
resources 118, such as a storage medium 120, a communica-
tion network 122, a user interface 124, and the like. A first
portion of the application 106 may be seamlessly transmitted
to a first (remote) hardware 108, a second portion of the
application 110 may be seamlessly transmitted to a second
(remote) hardware 112, and a third portion of the application
1114 may be seamlessly transmitted to a third (remote) hard-
ware 116 to execution, while a portion of the application is
being executed by the (local) hardware 104. Once the execu-
tion of the first, second and third portions are each completed
by the respective first, second and third (remote) hardwares,
the results (and state) of those portions are transferred back to
the controller to be integrated back to the application under
execution by the controller 104.

FIG. 2 is simplified timing diagram of a computer program,
according to some embodiments of the present invention. The
diagram shown is only a subset of the full timing process,
showing only when architecture agnostic state is being trans-
ferred from the remote hardware to the controller. Before this
would be taking place, the controller would have spawned the
application on the remote hardware already. This process first
identifies one or more execution boundaries. An execution
boundary is the point where execution of the application is
stopped on one architecture, the execution state is saved,
packaged and sent to another (remote) architecture for execu-
tion. In some embodiments, this boundary needs to be a
currently utilized application interface, because by choosing
an interface already used by application, the application does
not have to change to utilize the present invention. Possible
examples of this boundary include system calls or Portable
Operating System Interface (POSIX).

Once the execution boundary is understood (identified), a
method of capturing execution state is identified. This method
captures all necessary (execution) information to allow pro-
cessing to be transferred and restarted on another system,
regardless of the underlying architecture of that system.

The method of transfer between processors can be any-
thing that provides a real time transfer capability both to and

10

15

20

25

30

35

40

45

50

55

60

65

4

from the remote hardware, because the originator hardware
may be waiting to resume processing until it hears back from
the remote hardware. In this case, other applications may be
running on the originator hardware at this time, so computing
resources are not wasted.

The applications (or sub-applications) that will be running
on the remote hardware are also identified, and transferred to
their corresponding hardware. That is, identifying which
applications are running where, before they are sent to, and
started on their respective hardware. This can be done in
advance of the execution, or on the fly, allowing the execution
assignments to be done at random. The result, is an applica-
tion-set executing on a distributed set of hardware, but from
the applications perspective running on a single system.

FIG. 3 is an exemplary process flow for distributing execu-
tion of a computer program to a plurality of hardware archi-
tectures of different types, according to some embodiments of
the present invention. As shown in block 302, the computer
program/application is analyzed to identify a plurality of
execution boundaries within the application. Generally, com-
puter programs that require an operating system to execute
have predetermined points where execution control is trans-
ferred from the program to the operating system, and point
where it is returned to the program. In addition, computer
programs often rely on shared libraries in order to not recreate
commonly used functionality. That is, there is an execution
boundary when a program transfers execution control to the
library, and when control is transferred back to the program.
The execution boundaries that are identified will vary in how
often they are used and how widespread their usage is.

FIG. 4 shows a simplified process flow for identitying or
selecting a number of execution boundaries in an application,
according to some embodiments of the present invention. In
block 402, the binary (the binary executable, which is the
form the program will exist in on disk right before it is
executed, after all build and compilation steps are completed)
of the program is analyzed to determine which operating
system and libraries are used. Next, in block 404, the inven-
tion determines what execution boundaries the identified
operating system and libraries utilize, within the application.
Boundary information is then collected for selecting one or
more execution boundaries within the application. The
boundary information may include calling frequency of the
boundary, number of unique calls, call timing (when in a
program calls are made), calling dependency information
(i.e., who makes the call, the application or shared library),
and the like.

Referring back to FIG. 3, one or more execution bound-
aries is (are) selected from the plurality of execution bound-
aries, in block 304. In some embodiments, the execution
boundary is selected based on the design goal of the system.
For example, if all execution is destined for the same place,
then an execution boundary where there is an execution
bottleneck is chosen. Conversely, if execution is to be widely
distributed, then an execution boundary that is more spread
out is chosen. The boundary could also be selected based on
type of application running, for example a network applica-
tion would require a boundary that provides flexibility with
the networking interfaces it provides. Also, a graphical appli-
cation would require direct access to GPU interfaces. Another
example may be data backup applications that need access to
storage interfaces.

In block 306, the computer program is linked to the
selected one or more execution boundaries. In some embodi-
ments, the linking is accomplished by placing a program in
the identified execution boundary, which intercepts all com-
munication. This interceptor program (or a sniffer program)

US 9,158,584 B2

5

needs to knows (e.g., based on process ID) which data
exchanges to intercept in the selected execution boundary, so
the specific program must be identified (usually done by
process 1D, but there can be other methods). The identifica-
tion could also be done by user, calling frequency, or a pre-
determined pattern (every third call is rerouted. The computer
program is then executed with linked execution boundaries,
in block 308.

In block 310, a hardware agnostic state of the execution of
the computer program is saved, when the execution encoun-
ters a boundary from the selected one or more execution
boundaries. In some embodiments, the interceptor captures
the data and control exchanges over the identified boundary
and forms a state of the application at the time. The informa-
tion being exchanged is then organized and packaged in an
architecture (hardware) agnostic fashion for transmission to a
remote hardware processing unit. This state information (and
any data) needs to be operated on by the remote hardware
processing unit.

FIG. 6 shows an exemplary state information, according to
some embodiments of the present invention. As shown, the
registers of the Architecture one, on which the program is
initially being executed are converted to the registers of the
“Architecture Agnostic” state and the registers of the “Archi-
tecture Agnostic” state are converted to the registers of the
“Architecture Two” state. In this example, Architecture One is
aregister base architecture, and the calling conventions in this
case specify that arguments are stored in registers. This data is
transferred to the Architecture Agnostic state, which com-
prises of extracting the arguments form the registers (arg1 and
arg2) and packaging data that is specified by any pointers
(arg3). This is because the two architectures do not share an
address space (pointers cannot be passed between them). The
Architecture Agnostic state is transferred to Architecture
Two, and translated to its calling conventions. In this
example, a stack based calling convention is used, and the
arguments are placed onto the stack so execution can continue
on this hardware.

On the remote hardware/architectures, execution of the
transferred state begins and once the task is completed, the
results are returned to the originating hardware. That is, the
results are returned to the originating hardware by a reverse
process of the transfer. Accordingly, the state will be in the
form of the identified interface, and is then translated back
into the local calling conventions.

Referring back to FIG. 3, inblock 312, the hardware agnos-
tic state is transmitted to a remote hardware architecture to be
executed on the remote hardware architecture, responsive to
the hardware agnostic state. The destination hardware and the
method of transportation are identified, before the agnostic
state is transmitted to the remote hardware architecture. In
some embodiments, part of the interceptor program role is to
send out the state after it is captured, so it is configured with
a destination and method of transport. The method of trans-
port is usually fixed, i.e., a network transport between nodes,
but it is possible that something like a direct bus transfer or
serial connection is made. The destination could be condi-
tional on the type of the call made, or all calls could go to the
same destination. In some embodiments, the destination may
be randomized, for example, for security purposes so that an
attacker wouldn’t know where the underlying architecture is
and how to access it. That is, the remote hardware architecture
is selected randomly from a list of remote hardware architec-
tures.

FIG. 5 shows a simplified process flow for sending the
execution state to a remote hardware and receiving the results
back, according to some embodiments of the present inven-

20

25

30

35

40

55

6

tion. As shown in block 502, the destination (e.g., address of
the remote hardware) and mode of transportation (network,
local bus connection and the like) are identified by the inter-
ceptor program (i.e., already configured in the interceptor
program). The (hardware agnostic) state of execution is then
transmitted to the destination hardware in block 504. The
destination hardware then starts execution of the transferred
portion of the application and returns the result to the origi-
nating hardware, when completed, in block 506. Meanwhile,
the execution of the application is paused in the originating
hardware, until the results are received from the remote hard-
ware. However, as explained above, the local hardware may
be processing other tasks and/or applications while waiting
for the results from the remote hardware.

In some embodiments, the invention groups the selected
one or more boundaries for different types of hardware archi-
tectures and link the application to the grouping. This way,
each portion of the executing application can be optimally
assigned and transferred to a corresponding (remote) hard-
ware with minimum execution and/or transmission cost. For
example, in some cases, a single interface does not allow an
application to perform its task remotely. In these cases, a
grouping of interfaces would be needed. An example of this is
an application whose range of functions is defined by what
data the user enters (for example, a terminal shell) and there-
fore need to be capable of remotely executing a large number
of unrelated actions. This grouping of multiple boundaries
allows interception on more than a single execution boundary
by multiple interceptors.

It will be recognized by those skilled in the art that various
modifications may be made to the illustrated and other
embodiments of the invention described above, without
departing from the broad inventive step thereof. It will be
understood therefore that the invention is not limited to the
particular embodiments or arrangements disclosed, but is
rather intended to cover any changes, adaptations or modifi-
cations which are within the scope and spirit of the invention
as defined by the appended claims.

What is claimed is:

1. A method for distributing sequential execution of a com-
puter program to a plurality of hardware architectures of
different types, the method comprising:

analyzing the computer program to identify a plurality of

execution boundaries, wherein there is an execution
boundary when the computer program transfers execu-
tion control to a library, and when execution control is
transferred back to the computer program;

selecting one or more execution boundaries from the plu-

rality of execution boundaries, based on predetermined
parameters;

linking the computer program to the selected one or more

execution boundaries;
executing the computer program with linked execution
boundaries in an originating hardware architecture;

saving a hardware agnostic state of the execution of the
computer program at a first execution stop point in the
computer program, when the execution encounters a
boundary from the selected one or more execution
boundaries;

transmitting the hardware agnostic state to a remote hard-

ware architecture to be executed on the remote hardware
architecture, responsive to the hardware agnostic state;
and

sequentially executing the computer program starting from

the first execution stop point, by the remote hardware

US 9,158,584 B2

7

architecture, wherein the computer program is executed
by a single hardware architecture at any point of time,
during its execution.

2. The method of claim 1, further comprising grouping the
selected one or more boundaries for different types of hard-
ware architectures; and linking the computer program to the
grouping.

3. The method of claim 2, further comprising saving a
plurality of hardware agnostic states of the execution of the
computer program responsive to the grouping; and transmit-
ting the plurality of hardware agnostic states to a respective
remote hardware architecture, responsive to the grouping.

4. The method of claim 1, wherein analyzing the computer
program further comprises determining which operating sys-
tem and libraries are used by the computer program, deter-
mining what execution boundaries the identified operating
system and libraries utilize within the computer program; and
collecting boundary information for selecting one or more
execution boundaries within the computer program.

5. The method of claim 4, wherein the boundary informa-
tion includes calling frequency of the execution boundary,
and number of unique calls to the execution boundary.

6. The method of claim 5, wherein the boundary informa-
tion further includes call timing and calling dependency
information.

7. The method of claim 1, wherein the selected one or more
execution boundaries are selected based on how, often they
are used and how widespread their usage is.

8. The method of claim 1, wherein the selected one or more
execution boundaries are selected based on the type of the
computer program.

9. The method of claim 1, further comprising transferring
the result of execution of the hardware agnostic state from the
remote hardware to the originating hardware architecture.

10. The method of claim 1, further comprising identifying
a method of transmitting the hardware agnostic state to the
remote hardware architecture.

11. The method of claim 1, wherein the remote hardware
architecture is selected randomly from a list of remote hard-
ware architectures.

12. The method of claim 1, wherein registers of the origi-
nating hardware architecture are converted to the registers of
the hardware agnostic state and registers of the hardware
agnostic state are converted to the registers of the remote
hardware architecture.

13. A method for distributing execution of a computer
program to a plurality of hardware architectures of different
types, the method comprising:

10

15

20

25

30

35

40

45

8

analyzing the computer program to identify an execution
boundary, wherein there is an execution boundary when
the computer program transfers execution control to a
library, and when execution control is transterred back
to the computer program;
linking the computer program to the execution boundary;
executing the computer program with the linked execution
boundary in an originating hardware architecture;

saving a hardware agnostic state of the execution of the
computer program at a first execution stop point in the
computer program, when the execution encounters said
execution boundary;

transmitting the hardware agnostic state to a remote hard-

ware architecture to be executed on the remote hardware
architecture, responsive to the hardware agnostic state,
wherein the remote hardware architecture is selected
randomly from a list of remote hardware architectures;
and

sequentially executing the computer program starting from

the first execution stop point, by the remote hardware
architecture, wherein the computer program is executed
by a single hardware architecture at any point of time,
during its execution.

14. The method of claim 13, wherein the execution bound-
ary includes calling frequency of the execution boundary, and
number of unique calls to the execution boundary.

15. The method of claim 14, wherein the execution bound-
ary further includes call timing and calling dependency infor-
mation.

16. The method of claim 13, wherein the execution bound-
ary is identified based on how often it is used and how wide-
spread its usage is.

17. The method of claim 13, wherein the execution bound-
aries is identified based on the type of the computer program.

18. The method of claim 13, further comprising transfer-
ring the result of execution of the hardware agnostic state
from the remote hardware to the originating hardware archi-
tecture.

19. The method of claim 13, further comprising identifying
a method of transmitting the hardware agnostic state to the
remote hardware architecture.

20. The method of claim 13, wherein registers of the origi-
nating hardware architecture are converted to the registers of
the hardware agnostic state and registers of the hardware
agnostic state are converted to the registers of the remote
hardware architecture.

#* #* #* #* #*

